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I. INTRODUCTION   

Many domains, including healthcare, can benefit from well-
designed applications of artificial intelligence.  One example is 
explored in the paper, “Identification of 12 Cancer Types 
through Genome Deep Learning.” (Sun, et al., 2019)  Being able 
to identify cancer with a high amount of certainty through 
genome deep learning will enable doctors and scientists to catch 
cancer cases earlier than physicians are able to currently.  It will 
also allow scientists to broaden our understanding of how the 
genome plays a role in cancer development and can lead to more 
specialized research on treatments.  It can be a vital tool in the 
development of more targeted gene therapy - an increasingly 
studied treatment method (Dunbar, et al., 2018).  Cancer is still 
the second leading cause of death in the United States (CDC 
Cancer Data and Statistics, n.d.) and applications to utilize 
machine learning will expedite the aforementioned research. 
While the paper by Sun et. al addresses an interesting problem, 
the framework proposed by the authors is ill-defined.  We aim 
to address these weaknesses and produce a well-defined model 
that is useful in the field.  

Genomic cancer research has increased rapidly in the last 
few decades, leading to the widely known relationship between 
mutations in the genome and cancer development.  One big leap 
forward was the discovery of the involvement of p53, a proto 
oncogene that is involved in the majority of cancers, with 
mutations of the gene occurring in 40-45% of cancer patients 
(Soussi, 1994).  Germline mutations in the tumor suppressor 
genes brca1 and brca2 were discovered as well to have a high 
correlation with breast cancer, with 30-50% of hereditary 
patients showing these mutations (Ferla, et al., 2007).  These 
studies are just a glimpse into the research into cancer genomics, 
and we have found out a lot about specific genes that are 
involved heavily in cancer.  However, much more research is 
needed on how these genes interact with one another, as well as 
somatic mutations that are frequently seen across a variety of 
cancers.  Recent research has demonstrated that machine 
learning, and particularly deep learning can produce promising 
results in terms of leveraging individual sequence variations 
(such as those manifested in somatic mutations) to predict 
molecular traits (Angermueller, Parnamaa, Parts, & Stegle, 
2016). The database COSMIC is a curation of these somatic 
mutations, compiling mutations for 83 different cancer related 
genes (Forbes, et al., 2011).  Together with this data, as well as 
the ease and frequency of human genome sequencing, a deep 
learning model can be trained to pick up these mutations quickly 
and with increasing accuracy, giving doctors and researchers 
another tool to battle the increasing cases of cancer seen around 
the world.  

II. DATA 

In an effort to mirror the paper by Sun et. al, similar data sets 
were collected.  Somatic mutation data was collected from two 
main sources, the cancer data from the International Cancer 
Genome Consortium (Zhang, et al., 2011) and the healthy data 
from the 1,000 Genomes project. (Auton, Abecasis, Altshuler, 
& et al., 2015)  The cancer data included 5,987 donors with 12 
different cancers and the healthy data included 2,504 donors. 
The 12 cancer types are urothelial bladder carcinoma (BLCA), 
breast adenocarcinoma (BRCA), colon adenocarcinoma 
(COAD), glioblastoma multiforme (GBM), kidney renal clear 
cell carcinoma (KIRC), low grade glioma (LGG), lung 
squamous cell carcinoma (LUSC), ovarian carcinoma (OV), 
prostate adenocarcinoma (PRAD), skin cutaneous melanoma 
(SKCM), thyroid carcinoma (THCA) and uterine corpus 
endometrial carcinoma (UCEC).  Table 1 shows the distribution 
of data. 

 

Table 1. Distribution of Data by Donor Type 

Donor Type Count 

Healthy 2504 

Urothelial Bladder Carcinoma (BLCA) 411 

Breast Adenocarcinoma (BRCA) 1020 

Colon Adenocarcinoma (COAD) 402 

Glioblastoma Multiforme (GBM) 388 

Kidney Renal Clear Cell Carcinoma (KIRC) 361 

Low Grade Glioma (LGG) 508 

Lung Squamous Cell Carcinoma (LUSC) 485 

Ovarian Carcinoma (OV) 426 

Prostate Adenocarcinoma (PRAD) 497 

Skin Cutaneous Melanoma (SKCM) 466 

Thyroid Carcinoma (THCA) 492 

Uterine Corpus Endometrial Carcinoma (UCEC) 531 

 

Two encodings were created from the data sets.  The first 
was a simple binary encoding for mutations, 1 if the given donor 
had that mutation and 0 if they did not.  This created a very large, 
sparse matrix with over a million parameters.  Filtering out 
mutations shared by less than 5 donors brought it down to about 
33,000 parameters, but still a very sparse matrix.  This approach 
was similar to the one in the Genome Deep Learning paper (Sun, 
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et al., 2019), but since we chose a multi-class model, we kept 
more parameters. 

The second encoding contained frequencies and was based 
on the genes affected rather than the mutations.  In this encoding, 
the number of mutations affecting each gene were counted for 
each donor and put in the matrix.  Once again, this resulted in a 
fairly sparse matrix, but not nearly as sparse as the first.  After 
filtering out genes only affecting a few donors, the number of 
parameters remained about 30,000.  Ultimately, we opted to use 
the second encoding to feed into our models since upon 
preliminary evaluation, they gave better results. 

The 1000 genomes data was gathered from the phase 3 
project download site (1000 Genomes, n.d.) as a single VCF file 
containing the integrated structural variation map for all 2504 
individuals included in the study. Mutation data was parsed from 
the VCF file using the scikit-allel package (Scikit-allel, 2019), 
which includes numerous functions to enable the extraction of 
data from VCF files. The PyEnsembl package (PyEnsembl, n.d.) 
was then used to map the position and chromosome of each 
structural variant call to an ensembl gene ID, thus converting the 
data from its raw form into the same gene frequency encoding 
used for the cancerous individuals. 

III. VISUALIZATIONS AND EXPLORATORY ANALYTICS 

In order to better understand our data, we produced a series 
of visualizations, both to understand the biological functions as 
well as the shape of the data.  We also ran some preliminary 
analytics to help predict what our results might look like. 

A. Pathway Enrichments 

First, we wanted to see which functional pathway was being 
enriched for each of the cancer types.  If there is a certain 
functional group being enriched for only one cancer, researchers 
can provide specialized treatments and possibly catch on to 
cancer earlier, when paired with the model.  We used Cytoscape 
version 3.8.0, with the application BiNGO (Maere, Heymans, & 
Kuiper, 2005) that analyzes over-represented gene ontologies 
for a given gene symbol list. We used the list of genes affected 
from our data, separated by cancer type, to create a visualization 
of the affected pathways for each cancer.  Low grade gliomas 
was the data set with the least amount of genes affected, and thus 
had the least amount of enriched pathways, making it the easiest 
to visualize. (Figure 1) 

Pathway enrichment charts for the other eleven cancers are 
located in Appendix A.  This is a valuable way to look at how 
the functional ontologies of these affected genes are all 
connected, and how related they all are.  However, due to the 
extremely high number of represented pathways (440 at the 
most), it can be difficult to interpret.  Not only because of the 
size, but because enriched pathways at the top of the hierarchy 
(more specific) could be affecting pathways at the bottom, 
leading to a misinterpretation of broader ontologies.   

In order to make the functional processes of these genes 
easier to visualize, we plotted the top ten enriched pathways 
(from the Panther classification data) for each cancer in a 
stacked bar chart below. (Figure 2) Using this layout, we can 
more easily see which pathways are common among many 

 

Figure 1. A pathway enrichment chart for low grade gliomas, representing 177 gene ontologies.  Color on this chart represents 
the p-value of the Fisher’s exact test for over representation, and the size represents how many genes are included in the pathway. 
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cancers: regulation of biological quality (GO:0065008), 
regulation of multicellular organismal processes (GO:0051239), 
and system development (GO:0048731); and which cancers 
have pathways that are unique to them: thyroid carcinoma 
(THCA) and prostate adenocarcinoma (PRAD).  Part of this 
difference is that THCA and PRAD were two of our biggest 
datasets, so those cancers are going to have much more data to 
analyze, and therefore can be grouped into more specific 
ontologies. These cancers also target a specific part of the body, 
the thyroid and prostate, respectively.  This may be the cause of 
a more specialized functional pathway being affected than 
cancers in our model like skin cutaneous melanoma (SKCM) 
which is widely distributed across the body as well as functional 
pathways. 

B. UMAP 

 Since the data set is sparse and very highly dimensional, it 
can be difficult to visualize.  First we ran UMAP (McInnes, 
Healy, & Melville, 2018) on the full data set to reduce it to 2 
dimensions.  The resulting graph (Figure 3; left-side) shows the 
clear distinction between the healthy and cancerous data sets. 
This would indicate that a binary classifier trained to distinguish 
between cancer and healthy individuals should perform very 
well on this dataset, as a clear decision boundary is present in 2 
dimensions.  However, there is still a lot of overlap between the 
cancers.  In order to get a better visualization of the relationships 
within the cancer data in high-dimensional space, we then re-ran 
UMAP on just the cancer data, again reducing it from 30,000 to 
2 dimensions. (Figure 3; right-side) This plot shows that while 

 

Figure 2. This bar plot shows each of the twelve cancer’s top ten gene ontologies.  The y axis represents enrichment and the x 
axis lists the pathways. Each cancer has anywhere from 1 to 3 fold enrichment. 

 

Figure 3. Visualization of 2-dimensional embeddings generated by UMAP models fit to the entire dataset (left) and only the 
cancer data (right). 



  Azbijari, Jacobs, Turner, Wooton 

BIOINFORMATICS- Spring 2020   4 

the UMAP model is able to elucidate separation between some 
of the classes (e.g. THCA, top-left and SKCM, bottom-right), a 
large amount of overlap between the various classes still exists. 
This would indicate that learning a decision boundary that can 
distinguish between all 12 classes will require that the model 
learn a high-dimensional hyperplane that can divide the classes, 
and that this decision boundary is difficult to capture in two 
dimensions. 

IV. METHODS 

Knowing the cancer data has high overlap, we took two 
approaches to finding a good classifier for the data.  The first 
splits the process into two steps, first identifying if a patient has 
cancer, or not, and then attempting to classify the cancer.  The 
second attempts to use an autoencoder and classifier together to 
predict healthy or cancer type all together. 

To parse the ensembl gene ids to gene symbols, we wrote a 
parser in Jupyter notebook using MyGene located in Appendix 
B. MyGene is a database used to retrieve gene information and 
annotation data.  After that, the gene symbols were used as an 
input on the gene ontology website, which uses the Panther 
classification database (Panther Classification System, 2020) to 
get gene ontology and functional information from the gene list. 

A. Two-Model Approach 

One approach to training a DNN model to perform 
classification of healthy vs. the twelve cancer types is to use a 
two model approach. In this approach, two fully connected 
neural network models are trained in a supervised fashion on the 
same input data, but with different optimization objectives. The 
first model is trained to perform binary classification to 
distinguish healthy examples from cancerous examples. To train 
this model, we label the data as follows. Let D = X x Y denote 
the set of labelled data. Let X denote the set of inputs, where 

each x ∈ X is a vector of approximately 33,000 integer values, 

encoding the frequency of mutations affecting each of the 
approximately 33,000 genes reported in the dataset. Each 𝑥𝑖 
represents the mutation data for a separate individual donor. Let 
Y denote the set of labels, where 𝑦𝑖 = 1  if 𝑥𝑖  represents an 
individual with cancer (any one of BRCA, BLCA, THCA, etc.), 
and 𝑦𝑖 = 0 if 𝑥𝑖  represents an individual who is healthy. We 
then train the following binary classifier to predict a label �̂�𝑖 for 
each 𝑥𝑖 in the training data, and we minimize the standard binary 
cross-entropy between the predicted label �̂�𝑖 and actual label 𝑦𝑖  

via backpropagation during training. A schematic diagram of the 
architecture binary classifier is depicted in Figure 4. 

The second of the two models is trained to perform 
multiclass classification on individuals with cancer, further 
labelling them with a predicted type of cancer, such as BLCA or 
BRCA. To train this model, we use the same input encodings X 
as those used to train the binary classifier, but only train the 
model on cancerous examples. We produce multi-class labels Y, 
where each 𝑦𝑖  is a one-hot vector of length 12, indicating which 
type of cancer individual 𝑥𝑖  has. A schematic diagram of the 
architecture of the multi-class cancer type classifier is depicted 
in Figure 5. 

B. Multi-Output Model 

The second approach attempted is the training of an 
autoencoder and classifier together. We allow the model to have 
a single input layer, but a middle layer branches out to a 
classifier module and a reconstruction module. Essentially, an 
autoencoder is constructed but the encoder output is linked to 
the classifier input and the decoder input so that the classifier 
and the autoencoder are trained together. This allows the two 
losses to be optimized in parallel and proved to provide better 
results in comparison to training the autoencoder first and 
transferring the encoder to a classifier to be trained separately. 
The test set is pulled from the shuffled full data (500 test 
samples).  A basic diagram of this model is depicted in Figure 6. 

 

Figure 4. The model architecture of the binary 
classification model, consisting of three dense layers. 

 

Figure 5. Simplified schematic of the model architecture of 
the cancer type classifier, consisting of 7 dense layers. 

 

Figure 6. Simplified schematic of the model architecture of 
the multi-output model. 
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V. DISCUSSION OF RESULTS 

A. Two-Model Approach 

The initial binary classifier was trained on 4200 

samples for 4 epochs, achieving a final validation accuracy 

of 100% on 2800 validation samples in the 4th epoch. On a 

hold-out set of 1491 samples, this classifier obtained a final 

test accuracy of 100%. A confusion matrix showing the 

binary classifier’s predictive performance on each of the 

two class labels on the test dataset is depicted in Figure 7. 

 The cancer type (multi-class) classifier was trained 

exclusively on the 5,987 cancer samples, which were split 

into a training set of 5,000 and a test set of 987 samples. The 

training set was further split into training and validation 

sets, with a validation split of 1,250 samples out of 5,000. 

After training for 15 epochs, and minimizing the categorical 

cross-entropy between the predicted class labels and actual 

class labels, the multi-class classifier achieved a final 

validation accuracy of 50.64% in the 15th epoch. On the 

hold-out set of 987 samples, the classifier achieved a test 

accuracy of 50%. A confusion matrix depicting the multi-

class classifier’s predictive performance on the hold-out set 

is depicted in Figure 8. While the performance of the multi-

class classifier alone leaves much to be desired, in order to 

evaluate the merits of the two-model approach, it is helpful 

to calculate the overall accuracy of the predictions made by 

the two models as a whole. To do this, we take the 460 

healthy examples from the binary hold-out set, and combine 

them with the multi-class hold-out set of 987 samples to 

form a single test set of 1,447 samples. We then add up the 

number of correct predictions in the two confusion matrices 

depicted in figures 7 and 8, yielding a total of 982 correctly 

predicted samples. This amounts to an overall test accuracy 

of 67.86%, which is significantly worse when compared to 

the single-model approach described in section VI.B. 

Confusion matrices showing the model predictions on the 

full-dataset are available in Appendix C. 

While the two-model approach did not perform as well as 

the autoencoder/multi-class classifier hybrid approach, there is 

a notable correspondence between classes which the two-model 

classifier performed well on (measured in terms of F1 score) 

and the classes shown to be more separated from others in the 

UMAP visualizations. Clearly, the two-model approach is 

excellent at distinguishing healthy individuals from cancerous 

individuals, as was expected based on the UMAP visualization 

in Figure 3(left), which showed a clear separation between 

healthy and cancer data points. However, the model also 

performs relatively well in classifying LUSC and SKCM 

samples, with F1 scores of 0.76 and 0.78 respectively. These 

samples, represented by the olive and light-blue colored points 

in the UMAP visualization in Figure 3(right), were shown to be 

considerably better separated from the other classes. The fact 

that these samples are more separated from the other classes in 

 

Figure 7. Confusion matrix showing the distribution of 
binary classifier predictions on the test set. 

 

Figure 8. Confusion matrix showing the distribution of 
class label predictions generated by the cancer type 
classifier on the test set. 

Table II. Scores for Two-Model Approach 

Class Precision Recall F1 Score 

Healthy 1.0 1.0 1.0 

GBM 0.36 0.23 0.28 

KIRC 0.52 0.2 0.28 

BRCA 0.47 0.69 0.56 

PRAD 0.26 0.59 0.36 

UCEC 0.79 0.45 0.57 

COAD 0.86 0.32 0.46 

THCA 0.75 0.58 0.65 

LUSC 0.8 0.73 0.76 

SKCM 0.91 0.69 0.78 

OV 0.23 0.38 0.28 

LGG 0.89 0.75 0.81 

BLCA 0.72 0.26 0.39 
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high-dimensional space explains why the model performs 

better in classifying LUSC and SKCM inputs. 

B. Multi-Output Model 

The second model was trained for 100 epochs with batch 

sizes of 32. RMSprop was used as the optimizer with an initial 

learning rate of 0.001, a discount factor of 0.8, and momentum 

of 0.3. A schedule was used to decrease the learning rate. The 

scheduler monitors the validation loss by waiting for an 

improvement for five epochs. If no improvement occurs then 

the learning rate is reduced by a factor of 0.2.  This resulted in 

a test accuracy of 82.6% and validation accuracy of 79%. Due 

to the imbalance in the dataset we also measured the F1 score 

which was 0.89. The confusion matrix is shown in Figure 9 and 

includes both the healthy and cancer classifications. 

 

VI. NEXT STEPS AND CONCLUSION 

The results we got from our two models were promising and 

show that deep learning can definitely be applied to help with 

identification of cancer at a gene level.  There is still much 

research to be done in this area and we have included a few of 

our ideas here. 

One idea we had to get better results when classifying which 

cancer a donor has, is to derive specific tissues that contain the 

enriched genes.  By figuring out areas of local enrichment, 

medical professionals will be able to more precisely target 

predictive tests like biopsies and cell cultures.  To do this, we 

can use the R package TissueEnrich (Jain & Tuteja, 2018) that 

takes a list of input genes and determines if any of them are 

enriched, and from those if there is any tissue-specific 

enrichment.  

The lack of adoption of complex models in healthcare is 

mainly due to the lack of interpretability.  Our second area of 

exploration would be to address this problem. By establishing 

a pipeline that provides information about what the model is 

learning and how inputs are contributing to the outputs would 

be useful. One approach would be to use DeepLIFT to see how 

each gene is contributing to the cancer predictions. This could 

then motivate exploration into gene pathways. Another idea 

would be to reduce the input dimension space and maintain 

interpretability. The reason we trained the model with a high 

input dimension was to be able to use current interpretation 

methods for deep learning models. A method to reduce to 

dimensionality and maintain human level interpretability when 

computing contributions from this input would be extremely 

useful. 

 

  

 

Figure 9. Confusion matrix showing the distribution of 
binary classifier predictions on the test set. 
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APPENDIX 
 

APPENDIX A: PATHWAY ENRICHMENTS FOR ALL 12 CANCERS 

 

 
Figure 1. Bladder carcinoma (BLCA), 419 ontologies represented. 

 

 
Figure 2. Breast carcinoma (BRCA), 314 ontologies represented. 
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Figure 3. Colon adenocarcinoma (COAD), 414 ontologies represented. 

 

 

 
Figure 4. Glioblastoma multiforme (GBM), 303 ontologies represented. 
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Figure 5. Kidney renal clear cell carcinoma (KIRC), 301 ontologies represented. 

 

 

 

 
Figure 6. Low Grade Gliomas (LGG), representing 177 gene ontologies  
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Figure 7. Lung squamous cell carcinoma (LUSC), 440 ontologies represented, the highest number in our dataset. 

 

 

 
Figure 8. Ovarian cancer (OV), 268 ontologies represented. 
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Figure 9. Prostate adenocarcinoma (PRAD), 349 ontologies represented. 

 

 

 
Figure 10. Skin cutaneous melanoma (SKCM), 430 ontologies represented. 
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Figure 11. Thyroid carcinoma (THCA), 187 ontologies represented. 

 

 

 

 

Figure 12. Uterine corpus endometrial carcinoma (UCEC), 433 ontologies represented. 
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APPENDIX B: GENE SYMBOL PARSER 

 

Python parser to translate ensembl gene ID’s to gene symbols using MyGene database.  

 

 

 

 

 

 

 

 

 

 

 

 

  

import sys 
from mygene import MyGeneInfo 

 
import sys  

 
stdoutOrigin=sys.stdout  
sys.stdout = open("UCEC.txt", "w") 

 
mg = MyGeneInfo() 
     
genes = data.iloc[:,1] 

 
results = mg.querymany(genes, scopes=["ensembl.gene"], 

fields=["symbol"], species="human", verbose=False) 

 
for res in results: 
    q = res['query'] 
    s = 'NA' 
    if 'symbol' in res: 
        s = res['symbol'] 
    sys.stdout.write('{}\t{}\n'.format(q, s)) 
     
sys.stdout.close() 
sys.stdout=stdoutOrigin 
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APPENDIX C: ADDITIONAL CONFUSION MATRICES 

 

 
Figure 1. Confusion matrix for binary classifier on full dataset of 8491 healthy and cancer samples. 

 

 
Figure 2. Confusion matrix for cancer type classifier on full set of 5987 cancer samples. 


